Student Number:

SIG.G.M.S.

Teacher:

St George Girls High School

Mathematics Extension 1

General	 Reading time – 10 minutes 				
Instructions	 Working time – 2 hours 				
	Write using black pen				
	 Calculators approved by NESA may be used 				
	A reference sheet is provided				
	 For questions in Section I, use the Multiple-Choice answer sheet provided 				
	For questions in Section II:				
	\circ Answer the questions in the bookle	ets provided			
	\circ Start each question in a new writir	ng booklet			
	 Show relevant mathematical reaso Marks may not be awarded for inc presented solutions, or where mul provided 	omplete or po	orly		
	P. C. MOR				
Total marks:	 Section I – 10 marks (pages 2 – 6) 	Q1-10	/10		
Total marks: 70	-	Q1-10 Q11	/10 /10		
	 Section I – 10 marks (pages 2 – 6) 	-			
	 Section I – 10 marks (pages 2 – 6) Attempt Questions 1– 10 Allow about 15 minutes for this section 	Q11	/10		
	 Section I – 10 marks (pages 2 – 6) Attempt Questions 1– 10 Allow about 15 minutes for this section Section II – 60 marks (pages 7 –12) 	Q11 Q12 Q13	/10 /10		
	 Section I – 10 marks (pages 2 – 6) Attempt Questions 1– 10 Allow about 15 minutes for this section Section II – 60 marks (pages 7 –12) Attempt Questions 11–16 	Q11 Q12 Q13 Q14	/10 /10 /10 /10		
	 Section I – 10 marks (pages 2 – 6) Attempt Questions 1– 10 Allow about 15 minutes for this section Section II – 60 marks (pages 7 –12) 	Q11 Q12 Q13	/10 /10 /10		

%

Section I

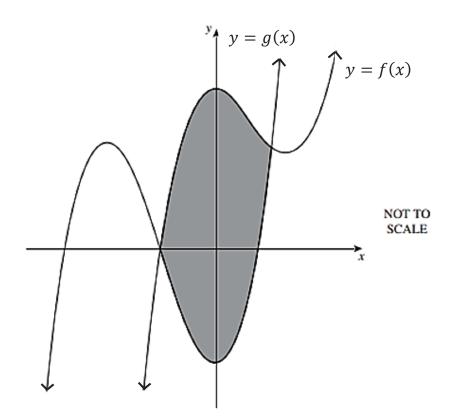
10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section Use the multiple-choice answer sheet provided for Questions 1 to 10.

1. Which of the following is the derivative of $arcsin\left(\frac{x}{3}\right)$?

A.
$$\frac{1}{3\sqrt{1-x^2}}$$

B.
$$\frac{1}{\sqrt{9-x^2}}$$

$$C. \quad \frac{1}{3\sqrt{1-9x^2}}$$


D.
$$-\frac{1}{3}\cos\left(\frac{x}{3}\right)$$

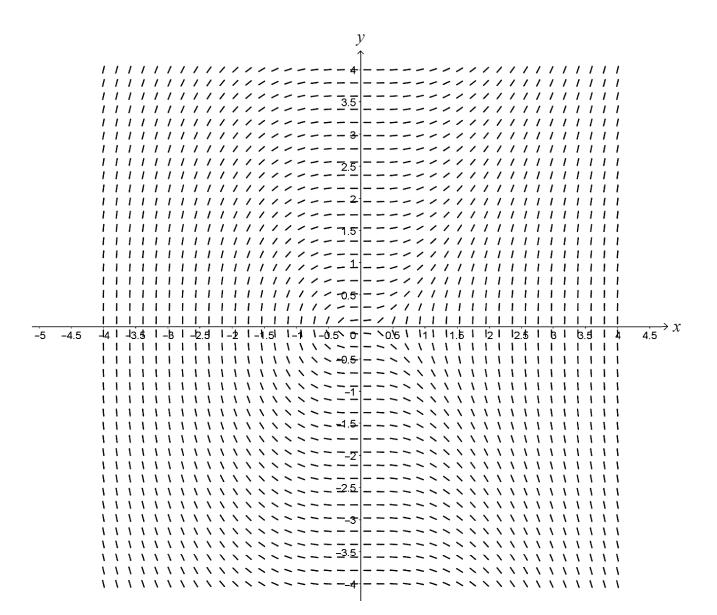
2. Given that $f(x) = \ln(2 - x)$, what is the range of $f^{-1}(x)$?

- A. [0,2]
- B. [0,2)
- C. [2,∞)
- D. (−∞, 2)
- 3. Find $\int \cos 5x \sin 3x \, dx$.
 - A. $-\frac{1}{15}\sin 5x\cos 3x + C$
 - B. $\frac{1}{16}(4\cos 2x \cos 8x) + C$
 - C. $\frac{1}{2}(\sin 8x 4\sin 2x) + C$
 - D. $\frac{1}{2}(\sin 8x + \sin 2x) + C$

4. Consider two curves with the equation $f(x) = x^3 - 2x^2 + 3$ and $g(x) = x^3 + 3x^2 - 2$.

The diagram shows part of the graphs of y = f(x) and y = g(x).

Which of the following gives the correct expression for the shaded area between the two curves?


A.
$$\int_{-2}^{3} (-5x^{2} + 5) dx$$

B.
$$\int_{-2}^{3} (5x^{2} - 5) dx$$

C.
$$\int_{-1}^{1} (5x^{2} - 5) dx$$

D.
$$\int_{-1}^{1} (-5x^{2} + 5) dx$$

5. Consider the vectors $p = \binom{t-8}{6}$ and $q = \binom{3}{2t}$.

What are the possible values of t so that p and q are parallel?

- A. -3, -11
- В. **—**1,9
- С. 1, -9
- D. 3,11
- 6. A Biology class consists of 10 girls and 15 boys. In how many ways can a group of three boys and two girls be chosen from this class to work on an investigation project?
 - A. 250
 - B. 900
 - C. 12 600
 - D. 20475
- 7. Find the volume generated when $y = \sin x$ between x = 0 and $x = \frac{\pi}{3}$ is rotated around the x axis.

A.
$$\frac{\pi^2}{6} - \frac{3}{8}$$
 cubic units.
B. $\frac{\pi^2}{6} - \frac{\sqrt{3}\pi}{8}$ cubic units.
C. $\frac{\pi^2}{3} - \frac{3\pi}{4}$ cubic units.
D. $\frac{\pi^2}{6} - \frac{\sqrt{3}\pi}{4}$ cubic units.

Which of the following could be the differential equation represented?

A.
$$\frac{dy}{dx} = x^2 y$$

B. $\frac{dy}{dx} = \frac{y^2}{x+y}$
C. $\frac{dy}{dx} = \frac{y}{x^2}$
D. $\frac{dy}{dx} = \frac{x^2}{y}$

9. The temperature T of a turkey placed in an oven is given by T = 185 - Pe^{-kt}, where P and k are positive constants and t is the time in hours.
Given that after 2 hours the rate of increase of temperature is 0.76 of the initial

rate of increase of temperature, what is the value of k correct to 3 decimal places?

- A. k = 0.162
- B. k = 0.178
- C. k = 0.137
- D. k = 0.014
- 10. In a car yard there are 80 cars of different colours. There are 12 black cars, 11 red cars and the remaining cars are white, blue, and grey.

The number of white cars is more than the number of blue cars and grey cars.

What is the least number of white cars in the car yard?

- A. 21
- B. 23
- C. 19
- D. 20

END OF SECTION I

<u>Section II</u> 60 marks Attempt Questions 11 – 16 Allow about 1 hour and 45 minutes for this section

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (10 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int \cos^2\left(\frac{x}{6}\right) dx$$
. 2

- (b) Find the coefficient of x^9 in the expansion of $(1 + 2x)(2 + x)^{12}$. 3
- (c) In how many ways can the word GEOMETRY be arranged in a straight line if the vowels must occupy the 2nd, 4th and 6th position.

(d) Solve the inequality
$$\frac{x^2}{x-2} \ge -1$$
.

Marks

Question 12 (10 marks) Use a SEPARATE writing booklet.

(a) If
$$\overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$, find \overrightarrow{AB} .

(b) Use the substitution
$$t = u^2 - 1$$
 to evaluate $\int_0^1 \frac{t}{\sqrt{1+t}} dt$. 3

- (c) The polynomial $P(x) = x^3 + ax^2 + bx 12$ has a double root at x = 2. Find the values of a and b.
- (d) By expressing $\sqrt{3}\sin\theta \cos\theta$ in the form $R\sin(\theta \alpha)$ where R > 0, solve the equation $\sqrt{3}\sin\theta - \cos\theta - 1 = 0$ for $[0, 2\pi]$.

Marks

3

Question 13 (10 marks) Use a SEPARATE writing booklet.

- (a) Solve the differential equation $\frac{dy}{dx} = e^x \cos^2 y$, to give an equation for *y* in terms of *x*, given that y(2) = 0.
- (b) The volume of a cube is expanding at the constant rate of 5mm³/s.
 At what rate is the surface area of the cube increasing when the side length of the cube is 60cm?
- (c) Consider the curve $y = \sin^{-1}\left(\frac{1}{x}\right)$.

(i) Show that
$$y' = \frac{-1}{x\sqrt{x^2-1}}$$
, for $x > 0$. 2

(ii) Find the equation of the tangent to the curve $y = \sin^{-1}\left(\frac{1}{y}\right)$

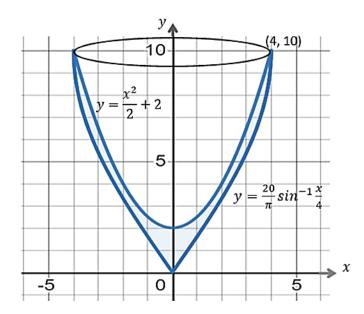
at the point where
$$x = 2$$
. 2

Marks

3

Question 14 (10 marks) Use a SEPARATE writing booklet.

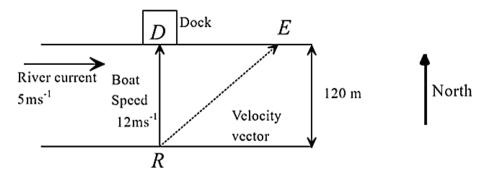
Use mathematical induction to prove that $10^n + 3 \times 4^{n+2} + 5$ (a) is divisible by 9, for all positive integers $n \ge 1$.


(b) Evaluate
$$\int_{\frac{1}{2}}^{1} \frac{\sqrt{1-x^2}}{x^2} dx$$
 using the substitution $x = \cos \theta$. 3

(c) A carpenter is using a lathe to create part of a small wooden bowl 10cm tall and 8cm wide, as shown below.

The shape formed is modelled by rotating the region between the curves

$$y = \frac{x^2}{2} + 2$$
 and $y = \frac{20}{\pi} \sin^{-1} \frac{x}{4}$ for $0 \le x \le 4$, about the y-axis.


Calculate the exact volume of the timber which makes up this part of the bowl.

Marks

Question 15 (10 marks) Use a SEPARATE writing booklet.Marks

- (a) Solve the equation $\sin 2x = \tan x$ for $0 \le x \le \pi$.
- (b) Rylie has a boat which moves at a top speed of 12 ms⁻¹ in still water.
 From point *R*, he wants to go due north to point *D* on the opposite side of the river, as shown in the diagram below.

Today the current in the river is flowing at 5 ms^{-1} . From *R*, he steers the boat due north toward *D* at top speed. Due to the current, he drifts down the river and arrives at point *F*.

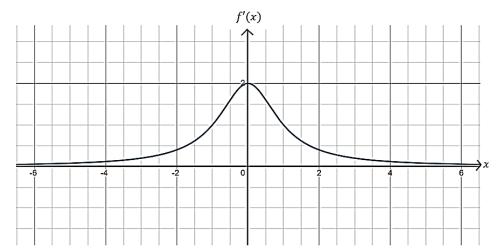
river and arrives at point *E*.

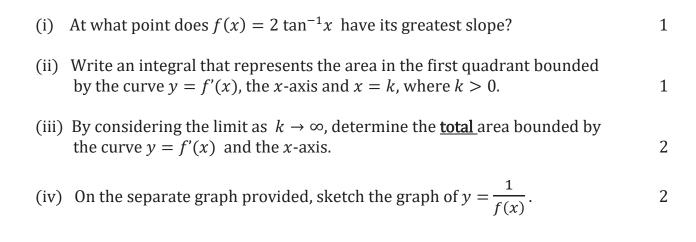
- (i) Taking *R* as the origin, write down Rylie's velocity vector in the form $x_i + y_j$ and find the magnitude of this vector.
- (ii) What is the bearing of Rylie's velocity vector and how far does he travel from *R* to *E*?
- (iii) On what bearing should Rylie have pointed the boat, so that he arrived at *D*, with the boat travelling at its top speed?

2

2

Question 16 (10 marks) Use a SEPARATE writing booklet.


(a) The rate of change of a population *P* can be modelled by the differential


equation $\frac{dP}{dt} = kP(1 - \frac{P}{M})$ where *t* is the time in years, *k* is the proportion

constant and *M* is a constant known as the carrying capacity (the maximum number that the population can reach).

Using the fact that $\frac{M}{P(M-P)} = \frac{1}{P} + \frac{1}{M-P}$, solve the differential equation. 4

(b) The graph below shows the <u>derivative</u> of $f(x) = 2 \tan^{-1} x$.

END OF EXAMINATION

Marks

EXTENSION I TRIAL SOLUTIONS 2022

1.
$$y = \sin^{-1}\left(\frac{x}{3}\right)$$
 $f(z) = \frac{1}{3}z$
 $dy = \frac{y_3}{\sqrt{1 - (\frac{1}{3}z)^2}}$ $f'(z) = \frac{1}{3}$
 $= 3\sqrt{1 - (\frac{1}{3}z)^2}$
 $= \frac{1}{3\sqrt{1 - \frac{1}{3}z^3}}$
 $= \frac{1}{\sqrt{9 - x^2}}$ (B)

2. Domain of f(z): 2-x>0 x<2 ... kange of f'(z) is y<2 (-0,2) D

3.
$$\int \cos 5x \sin 3x \, dx \qquad \cos 6 A \sin 8 = \frac{1}{2} \left[\sin (A+B) - \sin (A-B) \right]$$
$$= \frac{1}{2} \int \left(\sin 8x - \sin 2x \right) \, dx \qquad \therefore \cos 5x \sin 3x = \frac{1}{2} \left[\sin 8x - \sin 2x \right]$$
$$= \frac{1}{2} \left[-\frac{1}{8} \cos 8x + \frac{1}{4} \cos 2x \right] + C$$
$$= -\frac{1}{16} \left(\cos 8x + \frac{1}{4} \cos 2x \right) + C$$
$$= \frac{1}{16} \left(-\cos 8x + 4\cos 2x \right) + C$$
$$= \frac{1}{16} \left(4\cos 2x - \cos 8x \right) + C$$

4. $x^3 - 2x^2 + 3 = x^3 + 3x^2 - 2$ f(x) - g(x) $5x^2 = 5$ $= 3c^3 - 2x^2 + 3 - 3c^3 - 3x^2 + 2$ $x^2 = 1$ $= -5x^2 + 5$ $x = \pm 1$

$$A = \int_{-1}^{1} (-5x^2 + 5) dx \qquad \textcircled{D}$$

5. For
$$p$$
 and q to be parallel

$$p = \lambda q$$
 where λ is some scalar

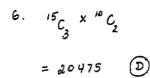
$$\begin{pmatrix} t-8\\6 \end{pmatrix} = k \begin{pmatrix} 3\\2t \end{pmatrix}$$

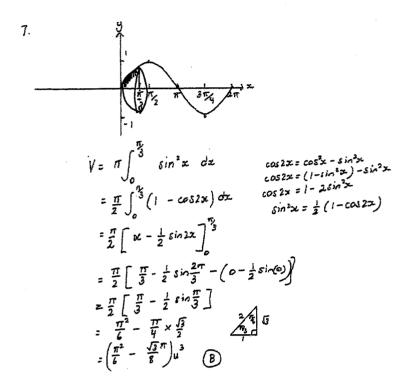
$$t-8 = 3k \qquad 6 = 2t k$$

$$k = \frac{3}{E}$$

$$b^2 - 8t = 9$$

$$b^2 - 8t = 9$$


$$(t-9)(t+1) = 0$$


$$(t-9)(t+1) = 0$$

$$\vdots \quad t = 9, -1$$

$$B$$

$$B$$

9.
$$T = 185 - Pe^{-kb}$$

$$\frac{dT}{dt} = Pke^{-kt}$$

$$t = 2$$

$$\frac{dT}{dt} = Pke^{-2k}$$

$$\frac{dT}{dt} = Pke^{-2k}$$

$$\frac{dT}{dt} = Pk$$

$$\frac{dT}{dt} = Pke^{-kt}$$

$$\frac{dT}{dt} = Pk$$

 $57 \div 3 = 19$ Cannot have 19 of each $\therefore 19+1 = 20$ while cars $\therefore D$

MATHEMATICS EXTENSION 1 – QUESTION SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS a) $\cos 2\theta = 2\cos^2 \theta - 1$ $\cos^2\theta = \frac{1}{2}(1+\cos 2\theta)$ $\int \cos^{2}(\frac{x}{6}) dx = \frac{1}{2} \int (1 + \cos 2(\frac{x}{6})) dx$ 1 Mark Gor changing the $= \frac{1}{2} \left((1 + \cos(\frac{2L}{2})) \right) dx$ equation correctly $=\frac{1}{2}\left(x+3\sin\left(\frac{x}{g}\right)\right)+C$ I musk Cor $= \frac{2}{2} + \frac{3}{3} \frac{1}{3} \frac{1}{2} + \frac{2}{2}$ connect integral Most students did the change of equation correctly but had difficulty with the correct integral. $(1+2)(2+2)^{12}$ $= (1+2nc) (1^{12}C_{2} 2^{12} + {}^{12}C_{2} 2^{11} + {}^{12}C_{2} 2^{10} + {}^{12}C_{2} 2^{10} + \dots$ I numbe for the expansion of $+ \frac{12}{c_{g}} 2^{4} x^{3} + \frac{12}{c_{g}} 2^{3} x^{9} + \dots + \frac{12}{c_{g}} x^{12}$ $= {}^{12}C_{2}{}^{12} + {}^{12}C_{2}{}^{2}_{\pi} + {}^{12}C_{2}{}^{\pi}_{\pi} + \dots + {}^{12}C_{2}{}^{2}_{\pi}{}^{q}_{\pi} + \dots$ (2+x)2 ...+ 12 C x + ... + 12 C 212 x 2x + 12 C, 2"x 2x + + 12 C 24 x × 2x + ... + 12 C x × 2x $= {}^{\prime 2} C_{\rho} 2 {}^{\prime 2} + {}^{\prime 2} C_{\rho} 2 {}^{\prime \prime} \times + ... + {}^{\prime 2} C_{\rho} 2 {}^{3} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{q} + ... + {}^{\prime 2} E_{\rho} 2 {}^{5} \times {}^{\prime 2} \times {}^{\prime 2} + ... + {}^{\prime 2} E_{\rho} 2 {}^{\prime 2} \times {}^{\prime$. + 12 C x x 2 Terms contraining χ^{9} ere ${}^{12}C_{9}2^{3}\chi^{9} + {}^{12}C_{9}2^{5}\chi^{9}$ $= ({}^{12}C_{9}2^{3} + {}^{12}C_{9}2^{5})\chi^{9}$ 1 mark for the 1 terms contrining Coefficient of x9 12Cq 23 + 12Cg 25 \mathbf{x}^{q} 1 mark for the l = 17600 correct answer Most students had difficulty with this question

MATHEMATICS EXTENSION 1 – QUESTION 11 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS e) ___, V , __ , V , __ , V , __ , Vowels are E, D, E ie. 3 vowels with 2 the some Consonants are GM, T, R, Y ie 5 consenants with no repeats Vowels can be placed in 3! ways 1 Olmark ho = 3 ways Consonants can be placed in S! ways finding sitter 1 Vowals or Total ways = 3×5! = 360 ways consonant Most students did this well but did not take into congenants. account that two of the vowels were the (n ≠ 2) d) 22 3-1 $\frac{\pi^{2}(n-2)^{2}}{(n-2)^{2}} > -1(n-2)^{2}$ $\chi^2(\chi-2) \ge -(\chi-2)^2$ 22(22-2) ≥ (22-2)2 ≥ 0 (x-2) (n2+x-2) > 0 (n-2)(x+2)(x-1) > 0 I mask Los graph of y= (2-2)(21+2)(2-1) getting the equality > 0 = mark for -2 correct factorisation to much for use -2 of arrest graph Eraph is above the x axis for for correct answer -25251 and 272 but n = 2 ; - 2 5 x 51, x > 2 -+ if x 72

MATHEMATICS EXTENSION 1 – QUESTION SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** . dy Alternative method 2 7-1 Take x > # 2 n² > -(n-2) n²+2-270 (x+2)(x-1) > 0 + 25-2,221 For buth to be true x>2 Take x < 2 $x^2 \leq -(x-z)$ 22+2-2 50 (x+2)(2-7) = 0 ルラ-2, ルミノ For both to be true 23-2, 261 . . solution -25 2651, 20 > 2

MATHEMATICS EXTENSION 1 - QUESTION / 2SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** This question was <u>a)</u> very well done. A $\vec{AB} = \vec{OB} - \vec{OA}$ - 1/2 mark $= \begin{pmatrix} 2 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ $= \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ - 1/2 mark (1 b) $\int \frac{1}{t} dt = I$ This question was not done very $t = u^2 - l$ well by many students $\frac{dt}{du} = 2u$ dt = 2uduMany students Also $y^2 = t + 1$ did not change when $t = 1, u^2 = 1 + 1 = 2$ the limits of $u = \sqrt{2}$ integration $\frac{u = 1}{1 = 0, u^{2} = 1}
 \frac{\sqrt{2}}{1 = 1}
 \frac{u^{2} - 1}{\sqrt{1 + u^{2} - 1}} \times 2u \, du$ -1 mark for correct limits I= r_{1} r_{2} u^{2} u^{2} u^{2} x^{2} u^{2} dy1 mark for $\frac{12}{2(u^2 - 1)} du$ = correct integrand R I mark - 2 mark for K

MATHEMATICS EXTENSION 1 – QUESTION 12 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** b) cont'd $= 2 \left[\frac{(\sqrt{2})^3}{3} - \sqrt{2} - \left(\frac{1}{3} - 1 \right) \right]$ $= 2 \int 2\sqrt{2} - \sqrt{2} - \frac{1}{3} + \frac{1}{3}$ $= 2 \int 2\sqrt{2} - \sqrt{2} + \frac{2}{3}$ 1/2 mark for substituting and expanding correctly. $2\sqrt{3} - 3\sqrt{2} + 2^{-1}$ $= 2(2-\sqrt{2})$ 4-212 Note: Many students wrote their integrand in terms of two different variables such as t and u and this is NOT CORRECT Many students did this: $\int_{0}^{1} \frac{d}{\sqrt{1+t}} dt$ These are = $\int \frac{u^2 - 1}{u^2 - 1} du$ the limits of integration for & not U, yet the integrand is interms of u

MATHEMATICS EXTENSION 1 - QUESTION (2) SUGGESTED SOLUTIONS MARKER'S COMMENTS MARKS c) $P(x) = x^3 + ax^2 + bx - 12$ $P'(x) = 3x^2 + 2ax + b$ 1/2 Not many students used If x=2 is a double root this method then P(2) = P'(2) = 0Students should revise the For P(2) = DMultiple Root $2^{3} + a(2)^{2} + b(2) - 12 = 0$ theorem for 8+4a+2b-12=0 the HSC. 4a + 2b = 42a+b=2 ---(1) -1/2 For P'(2) = 0 $3(2)^{2} + 2\dot{a}(z) + b = 0$ 1/2 12 + 4a +b =0 fa+b=-12 ---(2) . 1/2 Solving simultaneously () -2 -2a = 1442 a = -7 sub in () 2(-7)+b=2b = 2 + 14-1/2 b = 16

MATHEMATICS EXTENSION 1 - QUESTION 17 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS c) Alternate Method 1 If x=2 is a double root then the roots of the which are! 2,2,7. Sum of roots, Zx = -b 2+2+8=-a 4+y=-a - - - (1) Sum of the roots, Eag = -2 at a time $x\beta + \beta\gamma + \alpha\gamma = C$ 4 + 2y + 2y = b4 + 4y = b - -(2)Sum of the root, Early = -d $3 \text{ at a time} \quad 2 \times 2 \times y = 12$ 4y = 12y = 3sub in 0, 4+3=-9 1/2 a = -7sub in (2) 4+4×3=6 1/2 b = 16

MATHEMATICS EXTENSION 1 – QUESTION 2		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENT
c) Alternate Method 2 If $x = 2$ is a double root of $P(x)$		
then		
$P(x) = (x-2)^{2}(x-y)$		
$P(1) = (x^{2} - 4x + 4)(x - y)(1)$		
Equating constants		
-4y = -12		
y=3 sub in (1)	1/2	
$P(x) = (x^2 - 4x + 4)(x - 3)$	1/2	
$P(x) = (x^{2} - 4x + 4)(x - 3)$ = $x^{3} - 3x^{2} - 4x^{2} + 12x + 4x - 12$ = $x^{3} - 7x^{2} + 16x - 12$		
$= \chi - 1\chi + 16\chi - 12$		
$\therefore a = -7$ and $b = 16$	l	
		(3

MATHEMATICS EXTENSION 1 – QUESTION (7)SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** d) $\sqrt{3}\sin\theta - \cos\theta = R\sin(\theta - \alpha)$ √3 sin θ - cost = Rsin O cos a - Rcostsina Equating parts Reosa = 3 and Rsind = 1 -- 2 $(1)^{2} + (2)^{2} R^{2} s_{1} n^{2} d + R^{2} c_{2} s^{2} d = 1 + 3$ $R^{2}(\sin^{2} \chi + (os^{2} \chi)) = 4$ $R^{2} = 4$ - 2 mark $R = 2 \quad R > 0$ $Cos = \frac{\sqrt{3}}{2} \quad (cos = \frac{$ i a is in 1st Quad $\frac{1}{2} \frac{1}{5} \frac{1}$ -2 mark -2 mark $\therefore \alpha = T$ Now $\sqrt{3}$ sin θ -cos θ = i.e $2\sin(\Theta - \pi) = 1$ $\frac{2 \sin \left(\theta - \pi \right)}{6} = 1$ $\frac{16 \cos \theta \le 2\pi}{5 \cos \theta}$ $\frac{3 \sin \left(\theta - \pi \right)}{6} = \frac{1}{2}$ $\frac{-\pi \le \theta - \pi \le 2\pi - \pi}{6 \cos \theta}$ $\frac{-\pi \le \theta - \pi \le \frac{1}{6} \cos \theta}{5 \cos \theta}$ -1/2 mark $\begin{array}{c} \vdots \quad \Theta - \overline{\Pi} = \overline{\Pi} \quad \overline{\pi} - \overline{\Pi} \\ = \overline{\Pi} \quad 5\overline{\Pi} \\ \overline{G} \quad 6 \\ \end{array}$ and $\begin{array}{c} \Theta = \overline{\Pi} \\ \overline{G} \quad 6 \\ \end{array}$ - 1/2 mark

MATHEMATICS EXTENSION 1 – QUESTION 12 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** d) Cont'd Note: Many students were able to to find R=2, but many students could not work out which quadrant & was in and thus did not find a successfully. Please review auxiliary angle "method.

HEMATICS EXTENSION 1 – QUESTION 13 a) $dy = e^{z} \cos^{2} y$ $\frac{1}{\cos^2 y} dy = e^{\alpha} dx$ secydy = etdx Sec2ydy = Setdz tany = et + (when x=2, y=0 \therefore ton 0 = e²+C C= -e2 \therefore tony = $e^x - e^2$ y=tan" (ex - e2) 3 marks Complete solution, including integration and finding C 2 marks correct simplification of integrand using the = second mark Correct separation of variables b) Let the length of the cube bex (Don't use I as a variable for length) $V = x^{3} \qquad A = 6x^{2}$ $\frac{dV}{dx} = 3x^{2} \qquad \frac{dA}{dx} = 12x \qquad Also \quad \frac{dV}{dt} = 5$ $\frac{dA}{dL} = \frac{dA}{dx} \times \frac{dx}{dV} \times \frac{dV}{dL}$ = 12x x 3/2 × 5 = 20 when $x = 600 \text{ mm}, \frac{dA}{dt} = \frac{20}{600}$ (Take care with units) - - MM25-3 morks Complete solution 2 marks Correctly combining 2 or more rates in a useful way. mark Correct & or # Note that V=100A only at this instant; it is not use ful when finding a general rate of change.

MATHEMATICS EXTENSION 1 - QUESTION 13 (CONTINUED) C) 1 y= sin-1 + $y' = \frac{d_{1}(\frac{1}{2})}{(1-(\frac{1}{2})^{2}}$ (from the reference sheet) - | x² [= - = -1 x2 J= (x2 -1) This is a "show" question: you must show every step. Don't leave anything $\frac{1}{x^2 \int \left(\frac{1}{2}\right)^2 \int x^2 - 1}$ for x > 0 $x^{L} \times \frac{1}{x} \times \sqrt{x^{2}-1}$ -12 marks Complete solution 1 mark Correct use of formula sheet An important word on notation: while draw dy and y' are all well-defined ways of expressing the derivative of y with respect to x, DOES NOT mean the same thing as of (2

MATHEMATICS EXTENSION 1 – QUESTION 13 -ha x= 2, y= sin" = cii • मृ y'= -1 2 122-<u>- -'</u> 2J3 $\frac{1}{y} - \frac{\pi}{0} = \frac{-1}{2J_3}(x-2)$ 2/3y - 1/3 = -2+2 x +2/3y -2 - T/3 =0 marks Complete solution mark Correct gradient

MATHEMATICS EXTENSION 1 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
step 1 - Base Case - prove true for n=1		
For $N = 1$ $10^{n} + 3 \times 4^{n+2} + 5$		
$= 10^{1} + 3 \times 4^{1+2} + 5$		
= 10 + 192 + 5		
= 207		
$= 9 \times 23$ which is divisible by 9	(2) -	Correct proof to prove true
: true for n=1.		for n=1
Step 2 - Inductive hypothesis - assume true or $n=k$ ie $10^{k} + 3 \times 4^{k+2} + 5 = 9M$ is $10^{k} = 9M - 3 \times 4^{k}$	²⁺² - 5	
where MEZ		stating MEZ
$s \pm ep 3$ - Inductive step - Prove true for $n = k \pm 1$ Prove $10^{k+1} \pm 3x 4^{k+3} \pm 5$ is divisible by 9.	-	
$10^{k} \cdot 10 + 3 \cdot 4^{k+3} + 5$		
$-10(9M - 3x4^{k+2} - 5) + 3\cdot 4 + 5$ By the	assump	hon.
$= 904 - 20 \times 4^{\frac{k+2}{2}} = 50 + 3 \cdot 4^{\frac{k+3}{2}} + 5$		using the correct
$= 10 F1 - 50^{4} + 2^{2} - 50 + 3 \cdot 4^{2} \cdot 4^{3} + 5$		form of the assumption
$= 90M - 30 \times 4^{k+2} - 50 + 3 \cdot 4^{k+3} + 5$ = 90M - 30×4 ^k \cdot 4 ² - 50 + 3 \cdot 4 ^k \cdot 4 ³ + 5 = 90M - 480 \cdot 4 ^k - 45 + 192 \cdot 4 ^k		Many students tried
$= 90M - 288 \cdot 4^{k} - 45$		to only we 3.4 k+1 = 9M - 10 k-5
$= 9(10M - 32.4^{k} - 5)$		which was unsuccessful
hallense state has 9	0	
Which is divisible by 9.		Correct proof including conclusion (-12 if no conclusion with correct
true for n=k+l, since true for n=k		proof)
.: By the principle of mathematical induction it is true for all		
integer n≥1.		
· · · · · · · · · · · · · · · · · · ·		

•

۰.

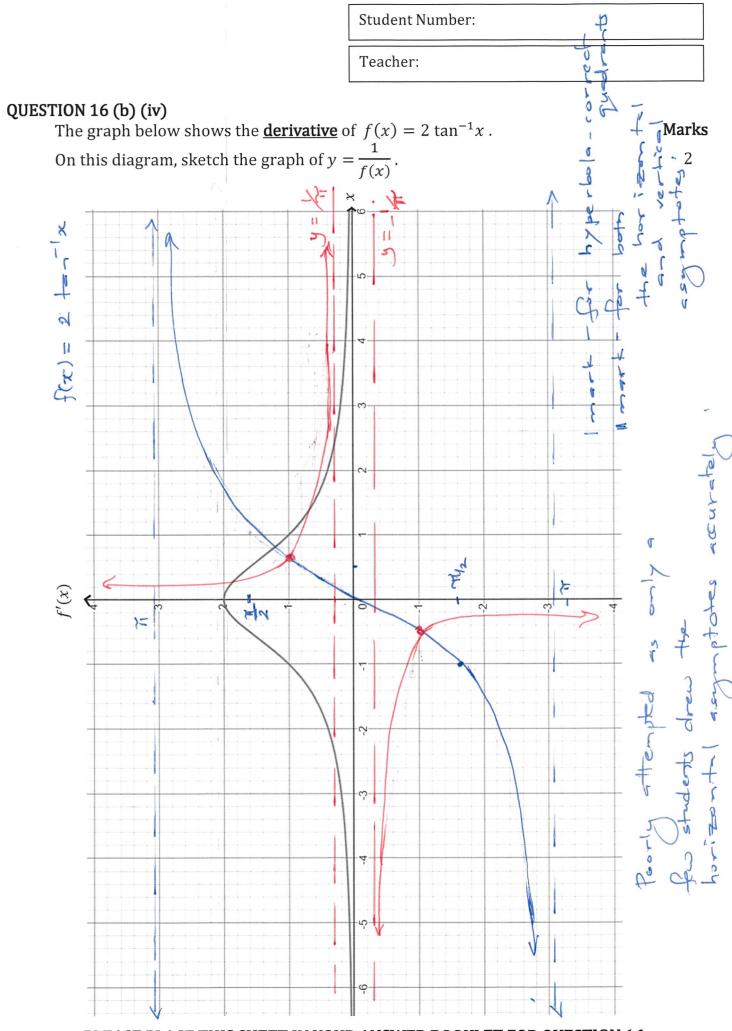
.

MATHEMATICS EXTENSION 1 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$\int_{\frac{1}{2}}^{1} \frac{\sqrt{1-x^2}}{x^2} dx \qquad x = \cos \theta \qquad \text{when } x = 1 \qquad 1 = \alpha$	50	
$\int_{\frac{1}{2}} \frac{dx}{x^2} \frac{dx}{d\theta} = \sin \theta \qquad \therefore \theta = \frac{1}{2}$		
$= \int_{\frac{\pi}{2}}^{0} \frac{dx}{\cos^2\theta} \frac{d^2c}{d\theta} = \sin\theta \qquad \therefore \theta = \frac{1}{\cos^2\theta} \qquad \therefore \theta = \frac{1}{\cos^2\theta} \qquad \therefore \theta = \frac{1}{\cos^2\theta} = \frac{1}{\cos^2\theta} \frac{d^2c}{d\theta} = \sin^2\theta d\theta \qquad \text{when } x = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \qquad $	TT 2	
	<u>1</u>	1 forms correct
$= \int_{\frac{1}{12}}^{0} \frac{\sin \theta}{\cos^{3} \theta} \times \frac{-\sin \theta}{d\theta} \frac{1}{12} \sqrt{3}$		integral with correct
$\int \frac{1}{1} \int $	-	, v
$= \int_{\frac{\pi}{3}}^{0} -\frac{\sin^{3}\theta}{\cos^{2}\theta} d\theta \qquad (1) \qquad \frac{\pi}{3} \int_{\frac{\pi}{3}}^{0} \frac{1}{1} d\theta = 1$		bounds
$= \int_{-\pi}^{0} -\tan^{2}\theta d\theta$		() simplifying to the stop given.
$= \int_{\pi_{\lambda}} (\sec^2 \sigma - 1)^{d\sigma}$		
$= \int_{\pi_{3}}^{0} (\sec^{2}\theta - 1) d\theta$ $= \int_{\pi_{3}}^{0} (1 - \sec^{2}\theta) d\theta$ $= \int_{\pi_{3}}^{0} (1 - \sec^{2}\theta) d\theta$ $= \left[\theta - \tan^{2}\theta\right]_{\pi_{3}}^{0}$		
$= \left[\theta - + \alpha \theta \right]_{\pi_{\lambda}}^{\pi_{\lambda}}$		
$= (0 - tan0) - (\frac{\pi}{3} - tan\frac{\pi}{3})$		
$= -\frac{\pi_3}{3} + \sqrt{3}$ = $\sqrt{3} - \frac{\pi_3}{3}$ (1)		
2 V3 3 C		Correct answer
		· · · · · · · · · · · · · · · · · · ·

•

. •

MATHEMATICS EXTENSION 1 – QUESTION 14 SUGGESTED SOLUTIONS **MARKER'S COMMENTS** MARKS $\frac{x^2}{y=2}+2$ $\frac{20}{\pi} \sin^{-1} \frac{\infty}{4}$ $\frac{y = \pi}{20} \sin^{-1} \frac{2}{4}$ $\frac{\pi}{20} y = \sin^{-1} \frac{2}{4}$ $\frac{\pi}{2} \frac{y = 2}{4} \frac{\pi}{4}$ $\frac{\pi}{20} y = \frac{1}{4}$ $\frac{\pi}{20} y = \frac{1}{4}$ $2y = 3c^{2} + 4$ <u>α = 4610 20 y</u> $x^2 = 16 \sin^2 \frac{\pi}{20} y$ $when x=0 \qquad x = 4$ $y = \frac{0^{2} + 2}{2} \qquad y = \frac{16}{2} + 2$ $y = 2 \qquad = 10$ $y = 2 \qquad = 10$ $y = \frac{20}{11} \sin^{-1} \frac{4}{4} \qquad = \frac{20}{11} \sin^{-1} \frac{4}{4} \qquad = \frac{20}{11} \sin^{-1} \frac{4}{4} \qquad = \frac{20}{11} \times \frac{11}{4} \qquad = \frac{10}{11} \times \frac{11}{10} \qquad = \frac{10}{10} \times \frac{11}{10} \qquad = \frac{10}{10} \times \frac{11}{10} \times \frac{11}{10} \qquad = \frac{10}{10} \times \frac{11}{10} \times \frac{$ Correct integral (1/2) \bigcirc Correct bounds 3 Correct integros (3) \bigcirc Correct bounds (2) Correct use of $\sin^2 \theta = \frac{1}{2} (1 - \cos 2\theta)$ $= 8\pi \left[y - \frac{10}{\pi} \sin \frac{\pi}{10} y \right]^{10} - \pi \left[(100 - 40) - (4 - 8) \right]$ $= 8\pi \left[10 - \frac{10}{\pi} \sin \pi - (0 - \frac{10}{\pi} \sin 0) \right] - \pi (60 + 4)$ = 8n [10-0] - 64m <u>= (80-64)</u>π 3 $\overline{(1)}$ $= 16\pi u^{3}$ $\widehat{}$ Correct answer cos 20 = cos 20 - sin 20 $\cos 2\theta = 1 - \sin^2 \theta - \sin^2 \theta$ $\cos 2\theta = 1 - 2\sin^2\theta$ $\sin^2\theta = \frac{1}{2}(1-\cos 2\theta)$ $\frac{\pi}{10} \sin^2 \frac{\pi}{20} y = \frac{1}{2} \left(1 - \cos \frac{\pi}{20} y \right)$


MATHEMATICS EXTENSION 1 - QUESTION 15 MSC trial 2022 SUGGESTED SOLUTIONS MARKS MARKER'S COMMENTS Q15 a (4 marks) Solve Sin 22 + tanz for OEXSIT Methodl 2 SINX COSX = fanz $x \neq \pi$. NB please DONT 2 SIAX COSX = SIAL 00526 DIVIDE by SINX. 2 Ginz cost = SINE 1 1 2511 x cos x - SINX = 0 this was a significant SINZ (2 COS 2 - 1)=0 OF SINX (1-25112x)= 0 issue for many Students. : SINX=0 or 2 cos2x-1=0 $LOS^2 x = \frac{1}{2}$ It meant SIAX=0 $\cos^2 x = \frac{1}{\sqrt{2}}$ was not considered solutions in both quadrants. Cos R = 1 RI R=# 2 X=O or T : 2C = T or 3T $(0 \leq x \leq \pi)$: 水=0,草理。「下 白白白白 Method 2. t formula let t= tanz then SIN 2000 2+ check where 1++2 tanzis undefined Similarly, dan't $\frac{2+}{1++2-}$ + (n)divide by r. $2f = f + f^3$ +=0, 100-1 $\widehat{}$ $t^{3} - t = 0$ tanx=0, tanx=1, tanx=1 2 = 0, T/4, 3 =, or T $+(+^2-1)=0$ (2) f(+-1)(++1)

MATHEMATICS EXTENSION $1 - QUESTION 15$ (b)	THEMATICS EXTENSION 1 – QUESTION 15 (b)	
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(U Sml) resultant vector.		No part marks
R 51 + 12j	1	mask
$ v = \sqrt{5^2 \pm 12^2}$		
≖ √ 169		
= 13 m ls	1	mark
		soprisingly; many students struggled to
		draw the diagram
(ii) , E		
$\frac{\tan \theta = 5}{12}$ $\frac{12}{67^{\circ}} = 023^{\circ}T$	1	
gave 12 if NO 0		
$\sin 67^\circ = \frac{120}{RE}$		
RE = 120 61067°		
RE = 130m	1	
$(iii) \qquad \qquad$)	
$\frac{12m/s}{360^{\circ}-24^{\circ}37^{\prime}} = \frac{24^{\circ}37^{\prime}}{2}$	$\left\{ \right. \right\}$	
÷ 335° Ţ	J	

y).

SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMEN
The trivial solutions are P=0 and P=M		Only 1 stude
tink tink		in the ent
$\frac{dP}{dt} = kP\left(1 - \frac{P}{M}\right)^{2mk} \frac{2mk}{2mk}$		cohort
		remembered
$\frac{dP}{dt} = kP(M-P)$)	= bout the
It - IV M		tr:v:=1 solution.
dP ikp M-p		01 210
k dt = M dp p(M-p)		Also, general
		Also, generall
$\left[\left[\frac{1}{p} + 1 \right] dp \right] \left[kdt \right]$	Insk	P= MAekt
TT-P TT-	55000	ss It Aekt
$\ln P - \ln M-P = kt + C = f_{ih}$	ould b	e should
$\frac{\ln \left \frac{P}{M-P} \right }{\left \frac{E}{M-P} \right } = kt + c ver$	y exp	licitely have
$P = e^{kt+c}$	- d /	both the
M-P		numerator and denom
P = e kt.ec	1	by Aett -
M-P		U
= Aekt, where A	= e ^c i	5 a e 70
post bit	sitive e	ostant.
P = Aet, where A is M-P consta		
M-P consta. P= MAe ^{kt} - PAe ^{kt}	st now	obtait a
Pt PAekt = MAekt		much neate
$P(1 + Ae^{kt}) = MAe^{kt}$		expression
: P = MAekt (+ Aekt 1+Aekt (+ Aekt	+ ~)	and a sum the second se
1+Aekt	⁺ ⁻ ⁻ ⁻	an a
P= M		
$\frac{1}{A}e^{-kt} + 1$ $\frac{1}{B}e^{-kt} + 1$	A	<i>‡</i> 0

MATHEMATICS EXTENSION 1 - QUESTION 16 6 SUGGESTED SOLUTIONS MARKS | MARKER'S COMMENTS 6 i) Greatest slope at x=0 Ink A number of However, the question is students asking you to write down the point at which the just write down x=0 greatest slope occurs. 50 lost Kmik Therefore, substitute x=0 isto the expression for fix) = 2 ton be $f(0) = 2 \times f(0)$ = 0 Ink for the , corresponding y-coordinate. : point = (0,0) ii) (kglose) doe $\int_{1}^{1} \frac{2}{1+x^2} dx$ Imk or [2 t= - 1x] (As differentiation and integration are inverse operations of each other) $= 4 \left[\pm -\frac{1}{2} \right]_{0}^{k}$ Ink = 4 [t=n"k - t=n"0] To find the area under this curve as k-> 00 As $k \rightarrow \infty$ f = -1 $k \rightarrow \pi/2$ -1 $\gamma = -1$ $k \rightarrow \pi/2$ $-\pi/2$ $= 4 \times (\pi_{12} - 0) = s = 0, \quad t = -\pi_{12}$ = 4× 11/2 12 mk = 271

PLEASE PLACE THIS SHEET IN YOUR ANSWER BOOKLET FOR QUESTION 16.